Monthly Rainfall Prediction Using Multiple Linear Regression Method in West Nusa Tenggara Region
DOI:
https://doi.org/10.59535/faase.v3i1.456Keywords:
DMC, Local factor, Multiple Regression Prediction, RainfallAbstract
Rainfall is a crucial meteorological element in tropical regions like Indonesia. The significant influence of rainfall on various sectors of life means that rainfall predictions are necessary for making plans. This research aims to determine the accuracy of rainfall predictions using the Multiple Linear Regression method and what local factors influence rainfall in the West Nusa Tenggara Region. Multiple Linear Regression is a method that can predict monthly rainfall using more than one independent variable. There are inconsistencies in the regression analysis process, and to overcome this in this study, DMC (Double Mass Curve) was used. The data used is BMKG data from the West Nusa Tenggara (NTB) Climatology Station for 2013 - 2022. In general, the level of prediction accuracy ranges between 54.10% - 87.50%. The best correlation coefficient value for the Lombok Island Region is r = 0.79. The Sumbawa Island region is r = 0.88, and the Bima region is r = 0.83. Based on the multiple linear regression equation model obtained, the most dominant local factors influencing rainfall in the NTB region are air and sea surface temperatures.
Downloads
References
I. W. A. Yuda, T. Osawa, M. Nagai, and R. Prasetia, “The Regionalization of Indonesian Maritime Continent Rainfall based on Integrated Multi-satellite Retrievals for GPM (IMERG),” in IOP Conference Series: Earth and Environmental Science, IOP Publishing Ltd, Nov. 2021. doi: 10.1088/1755-1315/893/1/012065.
R. Prima, M. S. B. Athallah, and G. R. Ramadhani, “Microphysical Parameterization Scheme with Satellite Data Verification and Observation Data for Analysis of Heavy Rain in Yogyakarta City,” Frontier Advances in Applied Science and Engineering, vol. 2, no. 1, pp. 17–25, Mar. 2024, doi: 10.59535/faase.v2i1.240.
A. Y. Elake, M. Talahatu, and P. Nanlohy, “Korelasi Multivariabel Enso, Monsun Dan Dipolemode Terhadap Variabilitas Curah Hujan Di Maluku,” Barekeng: Jurnal Ilmu Matematika Dan Terapan, vol. 12, no. 1, p. 7, May 2018, doi: 10.30598/vol12iss1pp7-16ar359.
Y. Wulan Millenia, M. Helmi, and L. Maslukah, “Analisis Mekanisme Pengaruh IOD, ENSO dan Monsun terhadap Suhu Permukaan Laut dan Curah Hujan di Perairan Kepulauan Mentawai, Sumatera Barat,” 2022. [Online]. Available: https://ejournal2.undip.ac.id/index.php/ijoce
S. Faiz Rohmana and A. Rusgiyono, “Penentuan Faktor-Faktor Yang Mempengaruhi Intensitas Curah Hujan Dengan Analisis Diskriminan Ganda Dan Regresi Logistik Multinomial (Studi Kasus: Data Curah Hujan Kota Semarang dari Stasiun Meteorologi Maritim Tanjung Emas Periode,” vol. 8, no. 3, pp. 398–406, 2019, [Online]. Available: http://ejournal3.undip.ac.id/index.php/gaussian
A. A. Yunia, D. A. Kusuma, B. Suhandi, B. N. Ruchjana, and A. History, “Rainfall Model Using Principal Component Regression Analysis with R Software in Sulawesi ARTICLE INFO ABSTRACT,” Desimal: Jurnal Matematika, vol. 3, no. 3, pp. 211–218, 2020, doi: 10.24042/djm.
R. Wicaksono, J. Dedy Irawan, and S. A. Wibowo, “Sistem Peramalan Curah Hujan Menggunakan Metode Regresi Linier Berganda Berbasis IOT,” 2023.
Suntono and Zakaria Anang, NTB Province in Figures. Mataram: BPS Propinsi NTB, 2021.
M. Sulistiyono, B. Satria, A. Sidauruk, and R. Wardhana, “Rainfall Prediction Using Multiple Linear Regression Algorithm,” JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer), vol. 9, no. 1, pp. 17–22, Aug. 2023, doi: 10.33480/jitk.v9i1.4203.
O. Myint, “Linear Regressions of Predicting Rainfall over Kalay Region,” Published in International Journal of Trend in Scientific Research and Development, no. 5, pp. 1681–1685, 2019, doi: 10.31142/ijtsrd26711.
S. Sarkar, A. Srivastava, and E. A. Kaur, “Prediction Rainfall with Regression Analysis,” vol. 11, [Online]. Available: www.ijraset.com
M. Navid, “Multiple Linear Regressions for Predicting Rainfall for Bangladesh,” Communications, vol. 6, no. 1, p. 1, 2018, doi: 10.11648/j.com.20180601.11.
Pratap Ganachari, Vijetha, and R. Kumari, “Machine Learning Based Rainfall Analysis,” Int J Sci Res Sci Technol, pp. 208–212, Jul. 2021, doi: 10.32628/cseit217462.
E. Dewi et al., “Prediksi Curah Hujan Di Kabupaten Majalengka Dengan Menggunakan Algoritma Regresi Rainfall Prediction in Majalengka District Using Regression Algorithm,” 2019. [Online]. Available: http://dataonline.bmkg.go.id/bmkg.online
S. Putramulyo and S. Alaa, “Prediksi Curah Hujan Bulanan Di Kota Samarinda Menggunakan Persamaan Regresi Dengan Prediktor Data Suhu dan Kelembapan Udara,” Eigen Mathematics Journal, pp. 13–16, Dec. 2018, doi: 10.29303/emj.v2i2.20.
A. Y. Barrera-Animas, L. O. Oyedele, M. Bilal, T. D. Akinosho, J. M. D. Delgado, and L. A. Akanbi, “Rainfall prediction: A comparative analysis of modern machine learning algorithms for time-series forecasting,” Machine Learning with Applications, vol. 7, p. 100204, Mar. 2022, doi: 10.1016/j.mlwa.2021.100204.
A. Abdi Adam et al., A Multi-Regression Model Based On Monthly Rainfall Prognostication: Case Study Of Kasese District, In East Africa. 2021. [Online]. Available: www.bilmescongress.com
Z. Guoshuai, D. Anjun, C. Jianguo, W. Dangwei, L. Qin, and X. Yiqin, “Improving the double mass curve method to analyse the variation trend of runoff and sediment load in watersheds,” LHB: Hydroscience Journal, vol. 109, no. 1, 2023, doi: 10.1080/27678490.2023.2236971.
A. Baihaqi, I. G. M. Kusnarta, and I. Yasin, “Validation And Utilization Of Ecmwf Rainfall Data Model To Evaluate Changes Of The Oldeman Climate Type In Lombok,” Russ J Agric Socioecon Sci, vol. 104, no. 8, pp. 135–141, Aug. 2020, doi: 10.18551/rjoas.2020-08.16.
A. Pratiwi, R. M. Taruna, S. Agustiarini, and D. S. A. Wibowo, “Prediksi Curah Hujan Bulanan Di Wilayah Lombok Barat Menggunakan Principal Component Regression (PCR),” Jurnal Teori dan Aplikasi Fisika, vol. 8, no. 2, pp. 175–182, Jul. 2020, doi: 10.23960/jtaf.v8i2.2597.
D. G. . Andrews, An Introduction to Atmospheric Physics. Cambridge University Press, 2010.
School Water Science, Condensation and the Water Cycle. 2019.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Suhayat Minardi, Anas Baihaqi, Haerul Wazni

This work is licensed under a Creative Commons Attribution 4.0 International License.
By submitting a manuscript to Frontier Advances in Applied Science and Engineering (FAASE), the author(s) agree to the following terms:
-
Copyright: The author(s) retain copyright to their work, granting Frontier Advances in Applied Science and Engineering (FAASE) the right to publish it. Articles are licensed under a Creative Commons Attribution 4.0 International License (CC BY).
-
License Grant: The CC BY license allows others to share and adapt the work for any purpose, even commercially, provided proper attribution is given to the original author(s) and the source, a link to the Creative Commons license is provided, and any changes made are indicated.
-
Author's Rights: Authors are allowed to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work, with proper acknowledgment of its initial publication in Frontier Advances in Applied Science and Engineering (FAASE).
-
Permissions: Reproduction, posting, transmission, or other distribution or use of the final published article, in whole or in part, requires prior written permission from Frontier Advances in Applied Science and Engineering (FAASE) and the respective author(s).
-
Attribution: Proper attribution must be given to the original author(s) and the source, indicating that the work was originally published in Frontier Advances in Applied Science and Engineering (FAASE) with a link to the published article.
-
No Warranty: The journal and its editorial team make no representations or warranties regarding the accuracy, completeness, or fitness for a particular purpose of the published work.
-
Dispute Resolution: Any disputes arising from the use of the licensed material shall be governed by the laws of [Jurisdiction] without regard to conflicts of law principles.
By submitting a manuscript to FAASE, the author(s) agree to abide by these license terms and grant the necessary rights to Frontier Advances in Applied Science and Engineering (FAASE) for the publication and dissemination of the submitted work.







