Solar Panel Analysis for Forecasting Solar Irradiation Using Fuzzy Time Series and ANN Methods

Authors

  • Moh. Zainul Falah Universitas Negeri Malang
  • Wahyu Tri Handoko
  • Sujito
  • Abdullah Iskandar Syah
  • Muladi
  • Arif Nur Afandi

DOI:

https://doi.org/10.59535/jece.v1i2.183

Keywords:

Solar, Irradiation, Fuzzy Time Series, ANN

Abstract

Solar energy is very important because it is a renewable and environmentally friendly source of energy. The demand for solar energy is increasing every year because people are increasingly aware of the importance of using clean and sustainable energy sources. This study aims to analyze the performance of solar panels using a solar irradiation forecasting model developed by the Fuzzy Time Series and Artificial Neural Network (ANN) methods. Solar irradiation data obtained from measurement of solar irradiation by means of IoT is used as input in the forecasting model. The forecasting model is then tested to see its accuracy in predicting solar panel performance. The test results show that the developed forecasting model has high accuracy in predicting solar panel performance. Therefore, the Fuzzy Time Series and ANN methods can be used as an effective tool in analyzing the performance of solar panels by taking into account environmental factors that have an impact on electricity production from solar panels. This research can be a reference for solar panel developers to improve solar panel performance by utilizing solar irradiation forecasting information.

Downloads

Download data is not yet available.

References

E. L. Utari, ‘Pemanfaatan energi terbarukan untuk perancangan sistem rotary dryer pada tahap pengeringan daun teh hijau di Kulonprogo’, Teknoin, vol. 24, no. 2, pp. 111–122, 2018.

B. S. Aprillia, D. K. Silalahi, and M. A. F. Rigoursyah, ‘Desain Sistem On-Grid Energi Terbarukan Skala Rumah Tangga Menggunakan Perangkat Lunak HOMER’, JTIM: Jurnal Teknologi Informasi dan Multimedia, vol. 1, no. 3, pp. 174–180, 2019.

M. H. R. Azhari et al., ‘Implementation of Appropriate Technology Polycrystalline Photovoltaic as New Renewable Alternative Energy in Public Street Lighting (PJU) at Pakuniran Probolinggo Area’, bce, vol. 3, no. 2, p. 126, Nov. 2023, doi: 10.51278/bce.v3i2.825.

F. Baskoro, W. T. Handoko, A. I. Agung, M. Widyartono, and U. T. Kartini, ‘Analisis Desain Solar Tube Dengan Panel Surya Pada Rumah Tinggal’, JURNAL TEKNIK ELEKTRO, vol. 10, no. 2, pp. 281–289, Jan. 2021, doi: 10.26740/jte.v10n2.p281-289.

M. R. Faiz, S. Sujito, H. Putranto, M. Muladi, M. Z. Falah, and A. I. Syah, ‘Utilizing Renewable Alternative Energy Sources For Public Street Lighting In Sambigede Village’, Community Development Journal : Jurnal Pengabdian Masyarakat, vol. 4, no. 3, Art. no. 3, Aug. 2023, doi: 10.31004/cdj.v4i3.17538.

D. Dzulfikar and W. Broto, ‘Optimalisasi pemanfaatan energi listrik tenaga surya skala rumah tangga’, in Prosiding Seminar Nasional Fisika (E-Journal), 2016, pp. SNF2016-ERE.

H. Abdillah, A. N. Afandi, M. Z. Falah, and A. Firmansah, ‘Solar Energy Monitoring System Design Using Radio Frequency for Remote Areas’, in 2020 International Conference on Smart Technology and Applications (ICoSTA), IEEE, 2020, pp. 1–6.

H. Abdillah, A. N. Afandi, M. Hadi, A. P. Wibawa, A. Firmansah, and M. Falah, ‘IoT based PJUTS performance monitoring system utilizing extended star topology’, in AIP Conference Proceedings, AIP Publishing, 2022.

M. Z. Falah, W. T. Handoko, A. I. Syah, F. Z. Azizah, Sujito, and L. Gumilar, ‘Implementation Of Smart Farming Based Solar Cell System In Hydroponic In The Agricultural Area Of Blitar Village’, Community Development Journal : Jurnal Pengabdian Masyarakat, vol. 4, no. 4, Art. no. 4, Sep. 2023, doi: 10.31004/cdj.v4i4.18161.

M. Z. Falah, A. I. Syah, W. T. Handoko, N. N. Laila, F. N. Faridah, and M. Muladi, ‘Implementation of an IoT-Based Smart Water System as a Means in Monitoring the Use of Consumer Water Debit Using Photovoltaic in Seboro Village Probolinggo’, bce, vol. 3, no. 2, p. 88, Oct. 2023, doi: 10.51278/bce.v3i2.864.

S. Masri and J. K. R. Susila, ‘Model Simulasi Implementasi Algoritma Perturb & Observe MPPT Pada Modul PV Menggunakan Matlab-Simulink’, Journal of Science, Technology and Entrepreneur, vol. 2, no. 1, pp. 1–7, 2020.

A. R. Pazikadin, D. Rifai, K. Ali, M. Z. Malik, A. N. Abdalla, and M. A. Faraj, ‘Solar irradiance measurement instrumentation and power solar generation forecasting based on Artificial Neural Networks (ANN): A review of five years research trend’, Science of The Total Environment, vol. 715, p. 136848, 2020.

E. Prasodjo et al., ‘Indonesia Energy Outlook 2016’, 2016.

G. Wang, Y. Su, and L. Shu, ‘One-day-ahead daily power forecasting of photovoltaic systems based on partial functional linear regression models’, Renewable Energy, vol. 96, pp. 469–478, 2016, doi: 10.1016/j.renene.2016.04.089.

H. J. Lu and G. W. Chang, ‘Enchanced Grey Theory System Model with Weight Table for Now-casting PV POwer Generation Forecast’, IEEE Access, pp. 952–956, 2018.

V. Kushwaha and N. M. Pindoriya, ‘Very short-term solar PV generation forecast using SARIMA model: A case study’, 2017 7th International Conference on Power Systems, ICPS 2017, pp. 430–435, 2018, doi: 10.1109/ICPES.2017.8387332.

Y. Kashyap, A. Bansal, and A. K. Sao, ‘Solar radiation forecasting with multiple parameters neural networks’, Renewable and Sustainable Energy Reviews, vol. 49, pp. 825–835, 2015, doi: 10.1016/j.rser.2015.04.077.

W. Bendali, I. Saber, B. Bourachdi, M. Boussetta, and Y. Mourad, ‘Deep Learning Using Genetic Algorithm Optimization for Short Term Solar Irradiance Forecasting’, 4th International Conference on Intelligent Computing in Data Sciences, ICDS 2020, 2020, doi: 10.1109/ICDS50568.2020.9268682.

S. Susilowat and W. Sulistijanti, ‘Perbandingan metode fuzzy time series dengan metode box-jenkins untuk memprediksi jumlah kunjungan pasien rawat inap (studi kasus: Puskesmas geyer satu)’, Proceeding of The URECOL, pp. 61–73, 2018.

K. Nugroho, ‘Model Analisis Prediksi Menggunakan Metode Fuzzy Time Series’, Jurnal Ilmiah Infokam, vol. 12, no. 1, 2016.

A. B. Elfajar, B. D. Setiawan, and C. Dewi, ‘Peramalan Jumlah Kunjungan Wisatawan Kota Batu Menggunakan Metode Time Invariant Fuzzy Time Series’, Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer E-ISSN, vol. 2548, 2017.

A. Tealab, ‘Time series forecasting using artificial neural networks methodologies: A systematic review’, Future Computing and Informatics Journal, vol. 3, no. 2, pp. 334–340, 2018.

T. Shintate and L. Pichl, ‘Trend Prediction Classification for High Frequency Bitcoin Time Series with Deep Learning’, Journal of Risk and Financial Management, vol. 12, no. 1, p. 17, Jan. 2019, doi: 10.3390/jrfm12010017.

P. C. de Lima Silva, H. J. Sadaei, R. Ballini, and F. G. Guimarães, ‘Probabilistic forecasting with fuzzy time series’, IEEE Transactions on Fuzzy Systems, vol. 28, no. 8, pp. 1771–1784, 2019.

M. Bose and K. Mali, ‘Designing fuzzy time series forecasting models: A survey’, International Journal of Approximate Reasoning, vol. 111, pp. 78–99, 2019.

M. D. Philemon, Z. Ismail, and J. Dare, ‘A review of epidemic forecasting using artificial neural networks’, International Journal of Epidemiologic Research, vol. 6, no. 3, pp. 132–143, 2019.

G. Notton, C. Voyant, A. Fouilloy, J. L. Duchaud, and M. L. Nivet, ‘Some applications of ANN to solar radiation estimation and forecasting for energy applications’, Applied Sciences, vol. 9, no. 1, p. 209, 2019.

Downloads

Published

2024-01-28

How to Cite

Falah, M. Z., Wahyu Tri Handoko, Sujito, Abdullah Iskandar Syah, Muladi, & Arif Nur Afandi. (2024). Solar Panel Analysis for Forecasting Solar Irradiation Using Fuzzy Time Series and ANN Methods. Journal Electrical and Computer Experiences, 1(2), 61–68. https://doi.org/10.59535/jece.v1i2.183

Issue

Section

Electrical and Power Engineering