Implemantation of Non-Sensor Based Fuzzy Logic Control for G-Code Parameter Optimization: Advanced Efficiency in Titanium Alloy CNC Processing
DOI:
https://doi.org/10.59535/jece.v2i2.363Keywords:
Fuzzy Logic Control, G-code optimization, machining parameters, parameter optimization, titanium alloyAbstract
This research introduces an innovative algorithm for G-code modification using Fuzzy Logic Control (FLC) to optimize Computer Numerical Control (CNC) machining parameters without relying on additional hardware or sensors. The study develops a computational framework that processes G-code blocks with an average speed of 0.3ms while maintaining a minimal memory footprint of 1.2MB. Implementation results demonstrate an 18% reduction in total machining time, with the feed rate optimized from 1000 mm/min to 1180 mm/min for linear cutting and spindle speed enhanced from 3000 RPM to 3450 RPM, while maintaining conservative parameters for critical plunge cutting operations. The system achieved a 23% increase in tool life through intelligent parameter modulation. Testing on titanium alloy workpieces showed consistent performance with zero machining interruptions during parameter modification, marking a five-fold improvement in processing speed compared to existing sensor-based systems. This hardware-independent approach enables rapid deployment in existing CNC systems through simple software updates, offering a cost-effective solution for machining optimization. The research establishes a foundation for intelligent G-code generation that adapts to material properties and cutting conditions while maintaining operational safety and efficiency.
Downloads
References
J. C. Chen and M. Savage, ‘A Fuzzy-Net-Based Multilevel In-Process Surface Roughness Recognition System in Milling Operations’, Int J Adv Manuf Technol, vol. 17, no. 9, pp. 670–676, May 2001, doi: 10.1007/s001700170132.
M. Davidson, ‘Classical Charged Particle Models Derived from Complex Shift Methods’, Int J Theor Phys, vol. 62, no. 7, p. 154, Jul. 2023, doi: 10.1007/s10773-023-05411-y.
P. Suthahar, K. Palanikumar, A. Ponshanmugakumar, and G. Anbuchezhiyan, ‘Machine Learning Advancements in Machining Processes: A Comprehensive Review for Manufacturing Optimization’, J. Phys.: Conf. Ser., vol. 2837, no. 1, p. 012102, Oct. 2024, doi: 10.1088/1742-6596/2837/1/012102.
X. Yang and C. Zhu, ‘Industrial Expert Systems Review: A Comprehensive Analysis of Typical Applications’, IEEE Access, vol. 12, pp. 88558–88584, 2024, doi: 10.1109/ACCESS.2024.3419047.
X. Hao, Y. Li, Z. Zhao, and C. Liu, ‘Dynamic machining process planning incorporating in-process workpiece deformation data for large-size aircraft structural parts’, International Journal of Computer Integrated Manufacturing, vol. 32, no. 2, pp. 136–147, Feb. 2019, doi: 10.1080/0951192X.2018.1529431.
T. Aziz, A. Ullah, A. Ali, M. Shabeer, and ..., ‘Manufactures of bio‐degradable and bio‐based polymers for bio‐materials in the pharmaceutical field’, Journal of Applied …, no. Query date: 2024-10-31 14:43:50, 2022, doi: 10.1002/app.52624.
E. D. Kirby and J. C. Chen, ‘Development of a fuzzy-nets-based surface roughness prediction system in turning operations’, Computers & Industrial Engineering, vol. 53, no. 1, pp. 30–42, Aug. 2007, doi: 10.1016/j.cie.2006.06.018.
T. Kıvak, ‘Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts’, Measurement, vol. 50, pp. 19–28, Apr. 2014, doi: 10.1016/j.measurement.2013.12.017.
R. Kumar, S. Sharma, R. Kumar, S. Verma, and M. Rafighi, ‘Review of Lubrication and Cooling in Computer Numerical Control (CNC) Machine Tools: A Content and Visualization Analysis, Research Hotspots and Gaps’, Sustainability, vol. 15, no. 6, Art. no. 6, Jan. 2023, doi: 10.3390/su15064970.
M. Ntemi, S. Paraschos, A. Karakostas, I. Gialampoukidis, S. Vrochidis, and I. Kompatsiaris, ‘Infrastructure monitoring and quality diagnosis in CNC machining: A review’, CIRP Journal of Manufacturing Science and Technology, vol. 38, pp. 631–649, Aug. 2022, doi: 10.1016/j.cirpj.2022.06.001.
Y. Liu, M. Chen, and Y. Sun, ‘Global toolpath modulation–based contour error pre-compensation for multi-axis CNC machining’, Int J Adv Manuf Technol, vol. 125, no. 7, pp. 3171–3189, Apr. 2023, doi: 10.1007/s00170-023-10857-9.
S. P. Leo Kumar, ‘State of The Art-Intense Review on Artificial Intelligence Systems Application in Process Planning and Manufacturing’, Engineering Applications of Artificial Intelligence, vol. 65, pp. 294–329, Oct. 2017, doi: 10.1016/j.engappai.2017.08.005.
M. Yucesan and M. Gul, ‘Hospital service quality evaluation: an integrated model based on Pythagorean fuzzy AHP and fuzzy TOPSIS’, Soft Comput, vol. 24, no. 5, pp. 3237–3255, Mar. 2020, doi: 10.1007/s00500-019-04084-2.
P. Chotikunnan, R. Chotikunnan, A. Nirapai, A. Wongkamhang, P. Imura, and M. Sangworasil, ‘Optimizing Membership Function Tuning for Fuzzy Control of Robotic Manipulators Using PID-Driven Data Techniques’, Journal of Robotics and Control (JRC), vol. 4, no. 2, Art. no. 2, Mar. 2023, doi: 10.18196/jrc.v4i2.18108.
S. Prvulovic, P. Mosorinski, D. Radosav, J. Tolmac, M. Josimovic, and V. Sinik, ‘Determination of the temperature in the cutting zone while processing machine plastic using fuzzy-logic controller (FLC)’, Ain Shams Engineering Journal, vol. 13, no. 3, p. 101624, May 2022, doi: 10.1016/j.asej.2021.10.019.
B. Liu, H. Zhang, Y. Liu, and M. Lu, ‘A Feedrate Planning Method in CNC System Based on Servo Response Error Model’, Electronics, vol. 12, no. 14, Art. no. 14, Jan. 2023, doi: 10.3390/electronics12143150.
Z. Wang, Z. Wang, S. He, X. Gu, and Z. F. Yan, ‘Fault detection and diagnosis of chillers using Bayesian network merged distance rejection and multi-source non-sensor information’, Applied Energy, vol. 188, pp. 200–214, Feb. 2017, doi: 10.1016/j.apenergy.2016.11.130.
A. Ikram and F. Pušavec, ‘1 Control, monitoring, modeling, and optimization of manufacturing and machining technologies’, in Soft Computing in Smart Manufacturing: Solutions toward Industry 5.0, T. Sibalija and J. P. Davim, Eds., De Gruyter, 2021, pp. 1–54. doi: 10.1515/9783110693225-001.
T. Truong, J.-S. Kim, and J. Kim, ‘Development of Embroidery-Type Pressure Sensor Dependent on Interdigitated Capacitive Method’, Polymers, vol. 14, no. 17, Art. no. 17, Jan. 2022, doi: 10.3390/polym14173446.
E. A. Al-Suhaimi, ‘Nanogenerator-Based Sensors for Energy Harvesting From Cardiac Contraction’, Frontiers in Energy Research, vol. 10, no. Query date: 2024-10-31 15:10:01, 2022, doi: 10.3389/fenrg.2022.900534.
T. Kroger and F. M. Wahl, ‘Multi-sensor integration and sensor fusion in industrial manipulation: Hybrid switched control, trajectory generation, and software development’, in 2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, Aug. 2008, pp. 411–418. doi: 10.1109/MFI.2008.4648030.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 I Made Aditya, Bryant Josua Runturambi, Jedithjah NaapiaTamedi Papia, Firmansyah Reskal Motulo, Jerry Heisye Purnama, Meike Negawati Kesek
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.