Development of a Non-Invasive Blood Glucose Measurement Device Using the Wheatstone Bridge Method Based on Arduino
DOI:
https://doi.org/10.59535/jece.v2i2.348Keywords:
DM, Urin, Jembatan Wheatstone, ArduinoAbstract
Monitoring blood glucose levels in the body of Diabetes Mellitus (DM) patients regularly is an essential part of managing blood sugar levels, which can improve the quality of life for DM patients. One approach in health technology for non-invasive blood glucose detection is through the use of the patient's urine. In this study, a blood glucose measurement device was designed using Arduino Uno, a Wheatstone bridge circuit, a voltage amplifier, and a 16x4 LCD to display the measurement results. The measurement process involves placing a urine sample on one arm of the Wheatstone bridge circuit, where two copper electrode cells are positioned. Changes in the output voltage of the bridge circuit result in a voltage variation, which is then amplified by the voltage amplifier, allowing it to be read by the Arduino. The measurement results indicate that the Wheatstone bridge method can be used to detect glucose in urine, with changes in voltage observed for each tested urine sample.
Downloads
References
D. M. Ştefănescu, ‘Wheatstone and Other Bridge-Like Configurations’, in Handbook of Force Transducers: Characteristics and Applications, D. M. Ştefănescu, Ed., Cham: Springer International Publishing, 2020, pp. 61–74. doi: 10.1007/978-3-030-35322-3_6.
T. Ferdiansyah, J.-P. Balayssac, and A. Turatsinze, ‘An Experimental Approach for Characterisation of Concrete Damage Using the Wheatstone Bridge Circuit’, Int J Civ Eng, vol. 20, no. 1, pp. 75–89, Jan. 2022, doi: 10.1007/s40999-021-00659-z.
A. B. Pamungkas, R. M. Yasi, and R. A. Pradana, ‘Resistance Value Analysis Study using the Wheatstone bridge circuit method and the Circuit Wizard and Proteus 8 simulators’, Journal of Educational Engineering and Environment, vol. 2, no. 1, Art. no. 1, May 2023, doi: 10.36526/jeee.v1i2.2748.
N. Bhaskar, V. Bairagi, E. Boonchieng, and M. V. Munot, ‘Automated Detection of Diabetes From Exhaled Human Breath Using Deep Hybrid Architecture’, IEEE Access, vol. 11, pp. 51712–51722, 2023, doi: 10.1109/ACCESS.2023.3278278.
T. Panula, T. Koivisto, M. Pänkäälä, T. Niiranen, I. Kantola, and M. Kaisti, ‘An instrument for measuring blood pressure and assessing cardiovascular health from the fingertip’, Biosensors and Bioelectronics, vol. 167, p. 112483, Nov. 2020, doi: 10.1016/j.bios.2020.112483.
Y. Zhang, F. Ni, and H. Liu, ‘Design and Optimization of Wheatstone Bridge Adjustment Circuit for Resistive Sensors’, IEEE Sensors Journal, vol. 23, no. 13, pp. 14330–14338, Jul. 2023, doi: 10.1109/JSEN.2023.3274927.
M. Z. Falah, W. T. Handoko, Sujito, A. I. Syah, Muladi, and A. N. Afandi, ‘Solar Panel Analysis for Forecasting Solar Irradiation Using Fuzzy Time Series and ANN Methods’, Journal Electrical and Computer Experiences, vol. 1, no. 2, Art. no. 2, 2023, doi: 10.59535/jece.v1i2.183.
S. J. Ahmad, ‘Environmental Monitoring Using IoT’, Journal Electrical and Computer Experiences, vol. 1, no. 1, Art. no. 1, May 2023, doi: 10.59535/ece.v1i1.12.
X. Ma et al., ‘Triglyceride glucose index for predicting cardiovascular outcomes after percutaneous coronary intervention in patients with type 2 diabetes mellitus and acute coronary syndrome’, Cardiovasc Diabetol, vol. 19, no. 1, p. 31, Mar. 2020, doi: 10.1186/s12933-020-01006-7.
J. H. Kim et al., ‘Relationship between natural killer cell activity and glucose control in patients with type 2 diabetes and prediabetes’, Journal of Diabetes Investigation, vol. 10, no. 5, pp. 1223–1228, 2019, doi: 10.1111/jdi.13002.
J. Lu et al., ‘Time in Range in Relation to All-Cause and Cardiovascular Mortality in Patients With Type 2 Diabetes: A Prospective Cohort Study’, Diabetes Care, vol. 44, no. 2, pp. 549–555, Oct. 2020, doi: 10.2337/dc20-1862.
J. S. Bhatti et al., ‘Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives’, Free Radical Biology and Medicine, 2022.
T. Che, C. Yan, D. Tian, X. Zhang, X. Liu, and Z. Wu, ‘Time-restricted feeding improves blood glucose and insulin sensitivity in overweight patients with type 2 diabetes: a randomised controlled trial’, Nutr Metab (Lond), vol. 18, no. 1, p. 88, Oct. 2021, doi: 10.1186/s12986-021-00613-9.
F. A. Rachma and T. Saptawati, ‘Analysis Tolerance of Monosodium Glutamate (MSG) In instant noodles With Uv-Vis Spectrophotometry’, Journal of Science and Technology Research for Pharmacy, vol. 1, no. 1, pp. 20–24, 2021.
C. T. Tracey et al., ‘Hybrid cellulose nanocrystal/magnetite glucose biosensors’, Carbohydrate Polymers, vol. 247, p. 116704, 2020.
T. H. Bui, B. Thangavel, M. Sharipov, K. Chen, and J. H. Shin, ‘Smartphone-Based Portable Bio-Chemical Sensors: Exploring Recent Advancements’, Chemosensors, vol. 11, no. 9, Art. no. 9, Sep. 2023, doi: 10.3390/chemosensors11090468.
M. C. Panergo, F. R. G. Cruz, and R. R. Maaliw, ‘A Circuit Design of a Sensor Amplifier for Improving Blood Pressure Measurement in Telehealth System’, in 2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Oct. 2021, pp. 0783–0788. doi: 10.1109/IEMCON53756.2021.9623070.
J.-H. Li, X. Liao, and C. Chu, ‘A Novel Thermistor-Based RF Power Sensor With Wheatstone Bridge Fabricating on MEMS Membrane’, Journal of Microelectromechanical Systems, vol. 29, no. 5, pp. 1314–1321, Oct. 2020, doi: 10.1109/JMEMS.2020.3011994.
M. Saeedi and R. Effatnejad, ‘A New Design of Dual-Axis Solar Tracking System With LDR Sensors by Using the Wheatstone Bridge Circuit’, IEEE Sensors Journal, vol. 21, no. 13, pp. 14915–14922, Jul. 2021, doi: 10.1109/JSEN.2021.3072876.
F. Ruciyanti and B. Sumanto, ‘Design and Development of a Body Fat Percentage Measurement System Using the Bioelectrical Impedance Analysis (BIA) Foot-to-Foot Method’, Emitor: Jurnal Teknik Elektro, pp. 208–215, Aug. 2024, doi: 10.23917/emitor.v24i2.4017.
S. Pan and K. A. A. Makinwa, ‘A 6.6-μW Wheatstone-Bridge Temperature Sensor for Biomedical Applications’, IEEE Solid-State Circuits Letters, vol. 3, pp. 334–337, 2020, doi: 10.1109/LSSC.2020.3019078.
G. Zonta, G. Rispoli, C. Malagù, and M. Astolfi, ‘Overview of Gas Sensors Focusing on Chemoresistive Ones for Cancer Detection’, Chemosensors, vol. 11, no. 10, Art. no. 10, Oct. 2023, doi: 10.3390/chemosensors11100519.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Huamaidillah Kurniadi Wardana, Vincent Andrew Akpan, Mohamed Bakry El Mashade, Bidya Debnath, Anderson L. Silva
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.